FANDOM


Energy Management Software (EMS) is a class of software that deals specifically with reducing energy costs and consumption for buildings or communities. EMS collects energy data from a variety of sources and uses it for three main purposes: Reporting, Monitoring and Engagement. Reporting purposes include verification of energy data and setting high-level energy use reduction targets. Monitoring is tracking real-time energy consumption to identify cost-saving opportunities. Engagement means initiating a dialogue between occupants and building managers to promote energy conservation. One key method is real-time energy consumption available in a web application or onsite display.

Data CollectionEdit

Energy Management Software collects real-time interval data, with intervals as short as one minute. The data are collected from interval meters, Building Automation Systems (BAS), directly from utilities, or other sources. Furthermore, past bills can be used to provide a comparison between pre- and post-EMS energy consumption.

Electricity and Natural Gas are the most common utilities measured, though systems may monitor steam, petroleum or other energy uses, water use, and even distributed generation.

ReportingEdit

Reporting tools are targeted at owners and executives who want to automate energy and emissions auditing. Cost and consumption data from a number of buildings can be aggregated or compared with the software, saving time relative to manual reporting. EMS offers more detailed energy information than utility billing can provide; another advantage is that outside factors affecting energy use, such as weather or building occupancy, can be accounted for as part of the reporting process. This information can be used to prioritize energy savings initiatives and balance energy savings against energy-related capital expenditures.

Bill verification can be used to compare metered consumption against billed consumption. Bill analysis can also demonstrate the impact of different energy costs, for example by comparing electrical demand charges to consumption costs.

Greenhouse gas (GHG) accounting can calculate direct or indirect GHG emissions, which may be used for internal reporting or enterprise carbon accounting.

MonitoringEdit

Monitoring tools track and display real-time and historical data. Often, EMS includes various benchmarking tools, such as energy consumption per square foot, weather normalization or more advanced analysis using energy modelling algorithms to identify anomalous consumption. Seeing exactly when energy is used, combined with anomaly recognition, can allow Facility or Energy Managers to identify savings opportunities.

Initiatives such as demand shaving, replacement of malfunctioning equipment, retrofits of inefficient equipment, and removal of unnecessary loads can be discovered and coordinated using the EMS. For example, an unexpected energy spike at a specific time each day may indicate an improperly set or malfunctioning timer. These tools can also be used for Energy Monitoring and Targeting. EMS uses models to correct for variable factors such as weather when performing historical comparisons to verify the effect of conservation and efficiency initiatives.

EMS may offer alerts, via text or email messages, when consumption values exceed pre-defined thresholds based on consumption or cost. These thresholds may be set at absolute levels, or use an energy model to determine when consumption is abnormally high or low.

EngagementEdit

The main objective of Engagement is to connect occupants’ daily choices with building energy consumption. By displaying real-time consumption information, occupants see the immediate impact of their actions. The software can be used to promote energy conservation initiatives, offer advice to the occupants, or provide a forum for feedback on sustainability initiatives.

Letting occupants know their real-time consumption alone can be responsible for a 7% reduction in energy consumption [1] EMS can also be used to quantify and demonstrate sustainable practices to potential employees and clients.

See alsoEdit

ReferencesEdit

  1. "The Prius Effect" by Elizabeth Dickinson


Wikipedia
Imported from Wikipedia

This page is being imported from Wikipedia, to create a Wikidwelling stub or article. These steps need to be completed:

  1. Sections not relevant to Wikidwelling can be deleted, or trimmed to a brief comment. Note: Image redlinks should not be removed
  2. Redlinks to articles unlikely to be created on Wikidwelling can be unlinked. (leave links to locations and institutions.)
  3. Categories may need to be adapted or removed - e.g. "people born in the 1940s". Redlinked categories are not a problem.
  4. Templates not used on Wikidwelling should be deleted, like all the interwiki links ({{de:...}}, {{fr:...}},
  5. When these first tasks are basically done, you can remove this template, writing {{Attrib Wikipedia | article name}} in place of this {{Attrib Wikipedia raw | article name}} at the bottom (simply remove "raw").
    You can also:
  6. Move to a section "External links" all Wikimedia project-related templates (e.g. {{Commons}}, {{Commons category}}, {{Wiktionary}}, etc. ).
  7. Add more specific content (related to the Wikidwelling topic) to the article, insert videos from YouTube, etc.

Pages with this template.


The original article was at Energy management software. The list of authors can be seen in the history for that page. The text of Wikipedia is available under the CC-BY-SA 3.0 license.


Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.