Shallow foundations of a house versus the deep foundations of a Skyscraper.

A foundation (also called a groundsill) is a structure that transfers loads to the earth. Foundations may generally be broken into two categories: shallow foundations and deep foundations.

Foundation typesEdit

Shallow foundationEdit

Main article: Shallow foundation

Shallow foundation is, usually, embedded a meter or so into soil. One common type is the spread footing which consists of strips or pads of concrete (or other materials) which extend below the frost line and transfer the weight from walls and columns to the soil or bedrock. Another common type is the slab-on-grade foundation where the weight of the building is transferred to the soil through a concrete slab placed at the surface.[citation needed]

Deep foundationEdit

Main article: Deep foundation

A deep foundation is used to transfer a load from a structure through an upper weak layer of soil to a stronger deeper layer of soil. There are different types of deep foundations including helical piles, impact driven piles, drilled shafts, caissons, piers, and earth stabilized columns. The naming conventions for different types of foundations vary between different engineers. Historically, piles were wood, later steel, reinforced concrete, and pre-tensioned concrete.[citation needed]

Base-isolating foundationEdit


Base isolator being tested at the UCSD Caltrans-SRMD facility

Main article: Base isolation

Base-isolating foundation, also known as seismic or base isolation system, is a collection of structural elements which is intended to substantially decouple a superstructure from its substructure resting on a shaking ground thus protecting a building or non-building structure's integrity during a potentially devastating earthquake.

The base-isolating foundation design is believed to be a powerful tool of contemporary earthquake engineering pertaining to the passive structural vibration control technologies [1].

Monopile foundationEdit

A large number of monopile foundations[2] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms.[3] For example, a single wind farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.7-meter-diameter monopile foundation in ocean depths up to 18 meters of water.[4] An earlier (2002) wind farm in the North Sea west of Denmark utilizes 80 large monopiles of 4 meter diameter sunk 25 meters deep into the seabed.[5]


Foundations are designed to have an adequate load capacity with limited settlement by a geotechnical engineer, and the foundation itself is designed structurally by a structural engineer.

The primary design concerns are settlement and bearing capacity. When considering settlement, total settlement and differential settlement is normally considered. Differential settlement is when one part of a foundation settles more than another part. This can cause problems to the structure the foundation is supporting. It is necessary that a foundation is not loaded beyond its bearing capacity or the foundation will "fail".

Other design considerations include scour and frost heave. Scour is when flowing water removes supporting soil from around a foundation (like a pier supporting a bridge over a river). Frost heave occurs when water in the ground freezes to form ice lenses.[citation needed]

Changes in soil moisture can cause expansive clay to swell and shrink. This swelling can vary across the footing due to seasonal changes or the effects of vegetation removing moisture. The variation in swell can cause the soil to distort, cracking the structure over it. This is a particular problem for house footings in semi-arid climates such as South Australia, Southwestern US, Turkey, Israel, Iran and South Africa where wet winters are followed by hot dry summers. Raft slabs with inherent stiffness have been developed in Australia with capabilities to resist this movement.[citation needed]

When structures are built in areas of permafrost, special consideration must be given to the thermal effect the structure will have on the permafrost. Generally, the structure is designed in a way that tries to prevent the permafrost from melting.[citation needed]


  1. [1]
  2. Offshore Wind Turbine Foundations, 2009-09-09, accessed 2010-04-12.
  3. Constructing a turbine foundation Horns Rev project, Elsam monopile foundation construction process, accessed 2010-04-12]
  4. Lynn and Inner Dowsing description
  5. Horns Revolution, Modern Power Systems, 2002-10-05, accessed 2010-04-14.

External links Edit

This page uses Creative Commons CC-BY-SA licensed content from Foundation on Wikipedia (view authors).

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.