Wikidwelling
Advertisement

Silt is granular material of a grain size between sand and clay derived from soil or rock. Silt may occur as a soil or as suspended sediment (also known as suspended load) in a surface water body. It may also exist as soil deposited at the bottom of a water body.

Source[]

Silt is created by a variety of physical processes capable of splitting the generally sand-sized quartz crystals of primary rocks by exploiting deficiencies in their lattice.[1] These involve chemical weathering of rock[2] and regolith, and a number of physical weathering processes such as frost shattering[3] and haloclasty.[4] The main process is abrasion through transport, including fluvial comminution, aeolian attrition and glacial grinding.[5] It is in semi-arid environments [6] that substantial quantities of silt are produced. Silt is sometimes known as 'rock flour' or 'stone dust', especially when produced by glacial action. Mineralogically, silt is composed mainly of quartz and feldspar. Sedimentary rock composed mainly of silt is known as siltstone.

Grain size criteria[]

In the Udden-Wentworth scale (due to Krumbein), silt particles range between 1⁄256 and 1⁄16 mm (3.9 to 62.5 μm), larger than clay but smaller than a sand. ISO 14688 grades silts between 0.002 mm and 0.063 mm, with clay particles being smaller and sands larger. In actuality, silt is chemically distinct from clay, and unlike clay, grains of silt are approximately the same size in all dimensions; furthermore, their size ranges overlap. Clays are formed from thin plate-shaped particles held together by electrostatic forces, so present a cohesion. According to the USDA Soil Texture Classification system, the sand-silt distinction is made at the 0.05 mm particle size.[7] The USDA system has been adopted by the Food and Agriculture Organization (FAO). In the Unified Soil Classification System (USCS) and the AASHTO Soil Classification system, the sand-silt distinction is made at the 0.075 mm particle size (i.e. material passing the #200 sieve). Silts and clays are distinguished by their plasticity.

SiltyMustang3Jan

Silt deposits around house and car in New Orleans left by flooding from a breach in the London Avenue Canal

Environmental impacts[]

Silt is easily transported in water or other liquids and is fine enough to be carried long distances by air in the form of dust. Thick deposits of silty material resulting from aeolian deposition are often called loess (a German term) or limon (French). Silt and clay contribute to turbidity in water. Silt is transported by streams or by water currents in the ocean. When silt appears as a pollutant in water the phenomenon is known as siltation.

Silt, deposited by annual floods along the Nile River, created the rich and fertile soil that sustained the Ancient Egyptian civilization. Silt deposited by the Mississippi River throughout the 20th century has decreased due to a system of levees, contributing to the disappearance of protective wetlands and barrier islands in the delta region surrounding New Orleans.[1]

In south east Bangladesh, in the area of Noakhali, cross dams were built in the 1960s whereby silt gradually started forming new land called "chars." The district of Noakhali has actually gained more than 28 square miles of land in the past 50 years.

With Dutch funding, the Bangladeshi government began to help develop older chars in the late 1970s, and the effort has since become a multiagency operation building roads, culverts, embankments, cyclone shelters, toilets and ponds, as well as distributing land to settlers. By fall 2010, the program will have allotted some 27,000 acres to 21,000 families.[8]

A main source of silt in urban rivers is disturbance of soil by construction activity.[citation needed] A main source in rural rivers is erosion from plowing of farm fields, clearcut logging or slash and burn treatment of forests.[citation needed] When the total ground surface is stripped of vegetation, the upper soil is vulnerable to wind and water erosion. Entire regions of countries have been rendered unproductive by erosion. On the Madagascar high central plateau, approximately 10% of the country's land area, virtually the entire landscape, is sterile, with gully erosive furrows deeper than 50 meters and one kilometer wide.[citation needed] Shifting cultivation is a farming system which incorporates the slash-and-burn method in some regions of the world. The resulting sediment load can cause extensive fish kills.[citation needed]

See also[]

References[]

  1. Moss, A J; Green, P (1975). "Sand and silt grains: Predetermination of their formation and properties by microfractures in quartz". Australian Journal of Earth Sciences 22 (4): 485–495. doi:10.1080/00167617508728913. 
  2. Nahon, D; Trompette, R (1982). "Origin of siltstones:glacial grinding versus weathering". Sedimentology 29: 25–35. doi:10.1111/j.1365-3091.1982.tb01706.x. 
  3. Lautridou, J P; Ozouf, J C (1982). "Experimental frost shattering: 15 years of research at the Centre de Geomorphologie du CNRS". Progress in Physical Geography 6: 215–232. doi:10.1177/030913338200600202. 
  4. Goudie, A S; Viles, H A (1995). "The nature and pattern of debris liberated by salt weathering: a laboratory study". Earth Surface Processes and Landforms 9: 95–98. doi:10.1002/esp.3290090112. 
  5. Wright, J S; Smith, B J; Whalley W B (1998). "Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations". Geomorphology 23: 15–34. doi:10.1016/S0169-555X(97)00084-6. 
  6. Haberlah, D (2007). "A call for Australian loess". AREA 39 (2): 224–229. doi:10.1111/j.1475-4762.2007.00730.x. 
  7. "Particle Size (618.43)". National Soil Survey Handbook Part 618 (42-55) Soil Properties and Qualities. United States Department of Agriculture - Natural Resource Conservation Service. http://soils.usda.gov/technical/handbook/contents/part618.html#43. Retrieved 2006-05-31. 
  8. http://pulitzercenter.org/openitem.cfm?id=1973

Template:Geotechnical engineering

ar:طمي be:Глей be-x-old:Глей da:Silt de:Schluff et:Aleuriit es:Limo eo:Silto fa:خاک لای fr:Limon (roche) ko:실트 id:Lanau is:Silt it:Limo he:טין lt:Dumblas hu:Kőzetliszt nl:Silt ja:シルト no:Silt nn:Silt pl:Muł (geologia) pt:Silte ru:Ил sah:Былыык scn:Limarra sk:Hlina sv:Silt uk:Мул vi:Đất bùn

Advertisement